رياضيات فصل ثاني

التوجيهي علمي

icon

الدرس الثالث: التكامل بالكسور الجزئية .

التحقق من الفهم ص  49

 أجد كلاً من التكاملين الآتيين: 

a x-7x2-x-6 dx   Solution:    x-7x2-x-6=ax-3+bx+2     x-7=a(x+2)+b(x-3)  when  x=3  3-7=5a    a=-45   when  x=-2 -2-7=-5b b=95   x-7x2-x-6=-45x-3+95x+2   x-7x2-x-6dx=-451x-3dx+951x+2dx                            =-45ln(x-3)+95ln(x+2)+c

 

b3x-1x2-1 dx     Solution:           3x-1x2-1=ax-1+bx+1           3x-1=a(x+1)+b(x-1)  when x=1 3-1=2a             a=2  when x=-1-3-1=-2b   b=2           3x-1x2-1=1x-1+2x+13x-1x2-1dx=1x-1dx+21x+1dx                   =ln(x-1)+2ln(x+1)+c

 

التحقق من الفهم ص  51

 أجد كلاً من التكاملين الآتيين: 

 

ax+4(2x-1)(x-1)2dx    Solution:x+4(2x-1)(x-1)2=a2x-1+bx-1+c(x-1)2x+4=a(x-1)2+b(2x-1)(x-1)+c(2x-1)  when   x=12    92=a4              a=18          when   x=1      5=c                  c=5      when   x=0      4=18+b-5     b=-9    x+4(2x-1)(x-1)2dx=1812x-1dx -91x-1dx +51(x-1)2dx                                 =922x-1dx -91x-1dx +51(x-1)2dx                                      =9ln(2x-1)-9ln(x-1)-5x-1+c

 

bx2-2x-4x3-4x2+4xdx    Solution:x2-2x-4 x3-4x2+4x=ax+bx-2+c(x-2)2  x2-2x-4=a(x-2)2+bx(x-2)+cx  when  x=0  -4=4aa=-1   when  x=2  -4=2c c=-2  when  x=-2    4=16a+8b-2c                                2=-16-32b+4 b=2x2-2x-4x3-4x2+4xdx=ln(x)+2ln(x-2)+2x-2+c

التحقق من الفهم ص  52

 أجد كلاً من التكاملين الآتيين: 

 a3x+4(x-3)(x2+4)dx    Solution:3x+4(x-3)(x2+4)=ax-3+bx+cx2+4 3x+4=a(x2+4)+(bx+c)(x-3) when x=3    13=13a           a=1 when x=0    4=4-3c          c=0 when x=1    7=5+-2b      b=-1 3x+4(x-3)(x2+4)dx=1x-3dx-122xx2+4dx                               =ln(x-3)-12ln(x2+4)+c      

 

b 7x2-x+1x3+1dx     Solution:  7x2-x+1x3+1=Ax+1+Bx+cx2-x+1   7x2-x+1=A(x2-x+1)+(Bx+c)(x+1) when  x=-1 9=3A              A=3 when  x=0    1=A +C                            1=3 +C          C=-2 when  x=1    7=3 +2B -4                          8=2B               B=4 7x2-x+1x3+1dx =3x+1dx +4x-2x2-x+1dx                           =3ln(x+1)+22x-1x2-x+1dx                           =3ln(x+1)+2ln(x2-x+1)+c

التحقق من الفهم ص  53 

 أجد كلاً من التكاملين الآتيين:

a 4x3-52x2-x-1dx     Solution:4x3-52x2-x-1=2x+1+3x-42x2-x-1  3x-42x2-x-1=A2x+1+Bx-1 3x-4=A(x-1)+B(2x+1) when  x=-12   -112=-32A       A=113 when  x=1        -1=3B                 B=-13 3x-10x2-7x+12dx = (2x+1)dx +11312x+1dx -13 1x-1dx                             =2x2+x+113ln(2x+1)-13ln(x-1)+c

 

b x2+x-1x2-xdx     Solution:x2+x-1x2-x=1+2x-1x2-x x2+x-1x2-xdx = 1dx +2x-1x2-xdx                             =x+ln(x2-x)+c

 

 

التحقق من الفهم ص  54 

 أجد كلاً من التكاملين الآتيين:  

a 3 4 2x3+x2-2x-4x2-4dx     Solution:  2x3+x2-2x-4x2-4= 2x3-2xx2-4+x2-4x2-4=6xx2-4+2x+1 2x3+x2-2x-4x2-4dx = 6xx2-4dx+ (2x+1)dx 2x3+x2-2x-4x2-4dx =3 2xx2-4dx+ (2x+1)dx                                    =3ln(x2-4)+x2+x+c 43                                      =(3ln(12)+20)-(3ln(8)-12)                                      =3ln(12)-3n(8)+8

 

b563x-10x2-7x+12dx     Solution:  3x-10x2-7x+12=Ax-3+Bx-4 3x-10=A(x-4)+B(x-3) when  x=4   2=B             B=2 when  x=3   -1=-A      A=1 3x-10x2-7x+12dx =1x-3dx +2 1x-4dx                             =ln(x-3)+2ln(x-4)65                              =ln(3)+2ln(2)-ln(2)-2ln(1)                             =ln(3)+ln(2)=ln(1.5)

 

التحقق من الفهم ص  57

 أجد كلاً من التكاملين الآتيين:  

a sec2xtan2x-1dx     Solution:  let u=tanx   dx=dusec2x   sec2xtan2x-1dx= sec2xu2-1dusec2x                        = 1u2-1du 1u2-1=Au-1+Bu+1  1=A(u+1)+B(u-1) when  u=-1  1=-2B         B=-12 when  u=1     1=2A             A=12 1u2-1dx =121u-1du -121u+1du                                     =12ln(u-1)-12ln(u+1)                                     =12ln(tanx-1)-12ln(tanx+1)+c

 

b ex(ex-1)(ex+4)dx     Solution:  let u=ex   dx=duex   ex(ex-1)(ex+4)dx= ex(u-1)(u+4)duex                        = 1(u-1)(u+4)du 1(u-1)(u+4)=Au-1+Bu+4  1=A(u+4)+B(u-1) when  u=-4  1=-5B         B=-15 when  u=1     1=5A             A=15 1(u-1)(u+4)dx =151u-1du -151u+4du                                     =15ln(u-1)-15ln(u+4)                                     =12ln(ex-1)-12ln(ex+4)+c

 

تمارين ومسائل

 أجد كلاً من التكاملات الآتية: 

1x-10x(x+5) dx     Solution:          x-10x(x+5)=ax+bx+5           x-10=a(x+5)+b(x)  when x=0      -10=5a             a=-2  when x=-5  -15=-5b         b=3  x-10x(x+5)dx=-2 1xdx+31x+5dx                   =-2ln(x)+3ln(x+5)+c

 

22x2-1 dx     Solution:           2x2-1=ax-1+bx+1           2=a(x+1)+b(x-1)  when x=1       2=2a             a=1  when x=-1   2=-2b         b=1  2x2-1dx=1x-1dx+1x+1dx                   =ln(x-1)+ln(x+1)+c

 

34(x-2)(x-4) dx     Solution:           4(x-2)(x-4)=ax-2+bx-4           4=a(x-4)+b(x-2)  when x=2       4=-2a             a=-2  when x=4       4=2b                b=2  4(x-2)(x-4)dx=-21x-2dx+21x-4dx                   =-2ln(x-2)+2ln(x-4)+c

 

4 3x+4x2+x dx     Solution:          3x+4x2+x=ax+bx+1          3x+4=a(x+1)+b(x)  when x=0         4=a             a=4  when x=-1     1=-b          b=-1   3x+4x2+xdx=41xdx-1x+1dx                   =4ln(x)-ln(x+1)+c

 

5 x2x2-4 dx     Solution:          x2x2-4=x2-4x2-4+4x2-4          x2x2-4=1+4x2-4  4x2-4=ax-2+bx+2          4=a(x+2)+b(x-2)  when x=2         4=4a             a=1  when x=-2     4=-4b          b=-1   4x2-4dx=1dx+1x-2dx-1x+2dx                   =x+ln(x-2)-ln(x+2)+c

 

6 3x-6x2+x-2 dx     Solution:          3x-6x2+x-2=ax+2+bx-1          3x-6=a(x-1)+b(x+2)  when x=-2      -12=-3a          a=4  when x=1         -3=3b                b=-1   3x-6x2+x-2dx=41x+2dx-1x-1dx                   =4ln(x+2)-ln(x-1)+c

 

7 4x+104x2-4x-3 dx     Solution:         4x+104x2-4x-3=a2x-3+b2x+1          4x+10=a(2x+1)+b(2x-3)  when x=32        16=4a          a=4  when x=-12     8=-4b        b=-2   4x+104x2-4x-3dx=412x-3dx-212x+1dx                            =4222x-3dx-2222x+1dx                            =2ln(2x-3)-ln(2x+1)+c

 

8 2x2+9x-11x3+2x2-5x-6 dx     Solution:         2x2+9x-11x3+2x2-5x-6=ax-2+bx+1+cx+3         2x2+9x-11=a(x+1)(x+3)+b(x-2)(x+3)+c(x-2)(x+1)  when x=2        15=15a             a=1  when x=-1    -18=-6b        b=3  when x=-3        -20=10c      c=-2   2x2+9x-11x3+2x2-5x-6dx=1x-2dx+31x+1dx-21x+3dx                                            =ln(x-2)+3ln(x+1)-2ln(x+3)+c

 

9 4xx2-2x-3 dx     Solution:        4xx2-2x-3=ax-3+bx+1          4x =a(x+1)+b(x-3)  when x=3          12=4a           a=3  when x=-1       -4=-4b      b=1   4xx2-2x-3dx=31x-3dx+1x+1dx                           =3ln(x-3)+ln(x+1)+c

 

10 8x2-19x+1(2x+1)(x-2)2 dx     Solution:         8x2-19x+1(2x+1)(x-2)2=a2x+1+bx-2+ c(x-2)2          8x2-19x+1=a(x-2)2+b(2x+1)(x-2)+c(2x+1)  when x=-12     252=254a             a=2  when x=2          -5=5c                 c=-1  when x=0          1=8-2b-1         b=3   8x2-19x+1(2x+1)(x-2)2dx=22x+1dx+31x-2dx-1(x-2)2dx                                  =ln(2x+1)+3ln(x-2)+1(x-2)+c

 

11 9x2-3x+29x2-4 dx     Solution:        9x2-3x+29x2-4=9x2-49x2-4+-3x+69x2-4        9x2-3x+29x2-4=1+-3x+69x2-4          -3x+69x2-4=a3x-2+b3x+2          -3x+6=a(3x+2)+b(3x-2)  when x=23        4=4a           a=1  when x=-23     8=-4b        b=-2    9x2-3x+29x2-4dx= 1dx+13x-2dx-213x+2dx                             = 1dx+1333x-2dx-2333x+2dx                            =x+13ln(3x-2)-23ln(3x+2)+c

 

12 x3+2x2+2x2+x dx     Solution:       x3+2x2+2x2+x=(x+1)+2-xx2+x      2-xx2+x=ax+bx+1       2-x=a(x+1)+b(x)  when x=0        2=a            a=2  when x=-1     3=-b        b=-3   x3+2x2+2x2+xdx= (x+1)dx+2 1xdx-31x+1dx                              =x22+x+2ln(x)-3ln(x+1)+c

 

13 x2+x+23-2x-x2 dx     Solution:       -x2+x+2x2+2x-3=-x2+2x-3x2+2x-3+-x+5x2+2x-3       -x2+x+2x2+2x-3=-1+-x+5x2+2x-3        -x+5x2+2x-3=ax-1+bx+3        -x+5=a(x+3)+b(x-1)  when x=1         4=4a            a=1  when x=-3     8=-4b         b=-2   x2+x+2x2+2x-3dx= (-1)dx+ 1x-1dx-21x+3dx   x2+x+23-2x-x2dx=x-ln(x-1)+2ln(x+3)+c

 

14 2x-4(x+2)(x2+4) dx     Solution:       2x-4(x+2)(x2+4)=ax+2+bx+cx2+4        2x-4=a(x2+4)+(bx+c)(x+2)  when x=-2     -8=8a                a=-1  when x=0        -4=4a+2c         c=0  when x=1        -2=-5+3b        b=1   2x-4(x+2)(x2+4)dx=- 1x+2dx+ xx2+4dx                               =- 1x+2dx+12 2xx2+4dx                              =-ln(x+2)+12ln(x2+4)+c

 

15 x3-4x2-2x3+x2 dx     Solution:       x3-4x2-2x3+x2= 2-5x2x3+x2+1       2-5x2x3+x2=ax+1+bx+cx2       2-5x2=a(x2)+b(x+1)(x)+c(x+1)  when x=-1     -3=a                         a=-3  when x=0        2=c                             c=2  when x=1        -3=-3+2b +4       b=-2   x3-4x2-2x3+x2dx= 1dx-3 1x+1dx-2 1xdx+2 1x2dx                              =x-3ln(x+1)-2ln(x)-2x+c

 

16 3-x2-5x-12x2 dx     Solution:         3-x2-5x-12x2=a1-4x+b3x+2          3-x=a(3x+2)+b(1-4x)  when x=14       114=114a          a=1  when x=-23     113=113b        b=1   3-x2-5x-12x2dx=11-4xdx+13x+2dx                               =-14-41-4xdx+1333x+2dx                                    =-14ln(1-4x)+13ln(3x+2)+c

 

17 3x3+2x2+12x4+6x2 dx     Solution:        3x3+2x2+12x4+6x2= 3x3x2(x2+6)+2(x2+6)x2(x2+6)                                 = 3xx2+6+2x2       3x3+2x2+12x4+6x2 dx= (3xx2+6+ x-2)dx                                     = 32 2xx2+6dx+  x-2dx                                     = 32ln(x2+6)-  x-1+c                                     = 32ln(x2+6)- 1x+c

 

18 5x-2(x-2)2 dx     Solution:         5x-2(x-2)2=5x-10+8(x-2)2         5x-2(x-2)2=5x-10(x-2)2+8(x-2)2         5x-2(x-2)2=5(x-2)(x-2)2+8(x-2)-2         5x-2(x-2)2=5x-2+8(x-2)-2         5x-2(x-2)2dx= 5x-2dx+8 (x-2)-2dx                            =5ln(x-2)-8x-2+c ***  we can solve it also by partial 

 أجد كلاً من التكاملات الآتية: 

19 2 46+3x-x2x3+2x2 dx     Solution:       6+3x-x2x3+2x2=ax+2+bx+cx2       6+3x-x2=a(x2)+b(x+2)(x)+c(x+2)  when x=-2     -4=4a                        a=-1  when x=0        6=2c                            c=3  when x=1        8=-1+3b +9            b=0   6+3x-x2x3+2x2dx=- 1x+2dx+ 0xdx+3 1x2dx                              =-ln(x+2)+3x42}=ln(23)+34

 

20 -13 139x2+49x2-4 dx     Solution:       9x2+49x2-4= 9x2-49x2-4+ 89x2-4       9x2+49x2-4=1+ 89x2-4       89x2-4=a3x+2+b3x-2       8=a(3x-2)+b(3x+2)  when x=-23     8=-4a               a=-2  when x=23       8=4b                    b=2    9x2+49x2-4dx= 1dx+-2 13x+2dx+2 13x-2dx                       = 1dx+-23 33x+2dx+23 33x-2dx   -13 13  9x2+49x2-4dx=x -23ln(3x+2)+23ln(3x-2)  13-13}                                                 =2-ln813-0.8

 

21 0 117-5x(2x+3)(2-x)2dx    Solution:17-5x(2x+3)(2-x)2=a2x+3+b2-x+c(2-x)217-5x=a(2-x)2+b(2x+3)(2-x)+c(2x+3) when   x=-32   492=494a       a=2                                when   x=2        7=7c                c=1                                when   x=0        17=8+6b+3   b=1                               17-5x(2x+3)(2-x)2dx=22x+3dx +12-xdx +1(2-x)2dx                                  =ln(2x+3)-ln(2-x)+12-x10                                =ln25-ln9+ln4+121.7 

 

22 1 4416x2+8x-3 dx     Solution:       416x2+8x-3=a4x-1+b4x+3       4=a(4x+3)+b(4x-1)  when x=14       4=4a       a=1  when x=-34  4=-4b     b=-1    416x2+8x-3dx= 14x-1dx- 14x+3dx                               =14 44x-1dx-14 44x+3dx  1 4416x2+8x-3 dx=14ln(4x-1)-14ln(4x+3)41                                                  =-ln19+ln15+ln7-ln340.15

 

23 3 45x+5x2+x-6 dx     Solution:      5x+5x2+x-6=ax+3+bx-2       5x+5=a(x-2)+b(x+3)  when x=-3       -10=-5a       a=2  when x=2           15=5b              b=3   5x+5x2+x-6dx=2 1x+3dx+3 1x-2dx   3 45x+5x2+x-6dx=2 1x+3dx+3 1x-2dx                            =2ln(x+3)+3ln(x-2)  43}                                                 =2ln7-2ln6+3ln2  2.39

 

24 3 44x3-4x2+4x dx     Solution:     4x3-4x2+4x=4x(x-2)2=ax+bx-2+c(x-2)2       4=a(x-2)2+bx(x-2)+cx  when x=0           4=4a                    a=1  when x=2           4=2c                     c=2  when x=1           4=1+-b+2        b=-1   4x3-4x2+4xdx= 1xdx- 1x-2dx+2 1(x-2)2dx   3 44x3-4x2+4xdx=ln(x)-ln(x-2)-2x-2  43}                                                 =ln4-ln3-ln2+1  0.59

 أجد مساحة المنطقة المظللة في كل من التمثيلين البيانيين الآتيين : 

25 011x2-5x+6 dx     Solution:     1x2-5x+6=ax-3+bx-2       1=a(x-2)+b(x-3)  when x=3           1=a                    a=1  when x=2           1=-b                b=-1   1x2-5x+6dx= 1x-3dx- 1x-2dx   011x2-5x+6dx=ln(x-3)-ln(|x-2|)  10}                                                 =2ln2-ln3  0.29

 

26 12x2+13x-x2 dx     Solution:     x2+13x-x2=x2-3x+3x-13x-x2     x2+13x-x2=x2-3x3x-x2+3x+13x-x2     x2+13x-x2=-1+a3-x+bx       3x+1=a(x)+b(3-x)  when x=3           10=3a                a=103  when x=0           1=3b                b=13   x2+13x-x2dx= -1dx+103 13-xdx+13 1xdx   12x2+13x-x2dx=-x-103ln(3-x)+13ln(x)  21}                                                 =11ln32-1  1.54

 يبين الشكل المجاور جزءا من منحنى الاقتران  f(x)=2x-5x2-2x-3   :   

 27 أجد إحداثيي النقطة A . 

 

 

     Solution:        f(x)=2x-5x2-2x-3=0     2x-5=0   x=52             

 

28  أجد مساحة المنطقة المظللة .

     Solution:      A=0522x-5x2-2x-3dx   0522x-5x2-2x-3dx=0522x-2x2-2x-3dx-0523x2-2x-3dx     0523x2-2x-3dx=?3x2-2x-3=Ax-3+Bx+1A(x+1)+B(x-3)=3when x=-1    B=-34when x=3       A=34 0522x-5x2-2x-3dx=0522x-2x2-2x-3dx-0523x2-2x-3dx                                =ln(x2-2x-3) 520 - 34ln(x+3)520+34ln(x-1)  520                                =(ln(254-5-3)-ln(-3))- 34(ln(52+3)-ln(0+3))+34(ln(52-1)-ln(0-1))                                =(ln(74)-ln(3))- 34(ln(112)-ln(3))+34(ln(32))

 

أجد كلاً من التكاملات الآتية: 

29 sinxcosx+cos2xdx     Solution:  let u=cosx   dx=-dusinx   sinxcosx+cos2xdx=- sinxu+u2dusinx                              = -1u+u2du -1u+u2=Au+Bu+1  -1=A(u+1)+B(u) when  u=0        -1=A          A=-1 when  u=-1     -1=-B      B=1 -1u+u2du =- 1udu +1u+1du                                     =-ln(u)+ln(u+1)                                     =-ln(cosx)+ln(cosx+1)+c

 

30 1x2+xxdx     Solution:  let u=x   dx=2xdu      u2=x   ,  u4=x2   1x2+xxdx= 1u4+u32udu                              = 2u3+u2du 2u3+u2=au+1+bu+cu2  2=au2+bu(u+1)+c(u+1) when  u=0        2=c                     c=2 when  u=-1    2=a                     a=2 when  u=1        2=2+2b+4       b=-2  2u3+u2du =2 1u+1du -2 1udu+2 1u2du                                     =2ln(u+1)-2ln(u)-2u                                     =2ln(x+1)-2ln(x)-2x+c                                     =2ln(x+1)-ln(x)-2x+c 

 

31 e2xe2x+3ex+2dx     Solution:  let u=ex   dx=duex   e2xe2x+3ex+2dx= e2xu2+3u+2duex                               = uu2+3u+2du uu2+3u+2=au+1+bu+2  u=a(u+2)+b(u+1) when  u=-1     -1=a                 a=-1 when  u=-2    -2=-b              b=2  uu2+3u+2du =- 1u+1du +2 1u+2du                                     =-ln(u+1)+2ln(u+2)                                     =-ln(ex+1)+2ln(ex+2)+c

 

 32 cosx(sin2x-4)sinxdx Solution:  let u=sinx   dx=ducosx   cosx(sin2x-4)sinxdx=- cosx(u2-4)uducosx                                  = 1(u2-4)udu1(u2-4)u=au+bu-2+cu+2  1=a(u-1)(u+2)+b(u)(u+2)+c(u)(u-2) when  u=0        1=-2a           a=-12 when  u=2        1=-2+8b      b=38 when  u=-2     1=8c                 c=18 1(u2-4)udu =-12 1udu +381u-2du+181u+2du                                     =-12ln(u)+38ln(u-2)+18ln(u+2)                                     =-12ln(sinx)+38ln(sinx-2)+18ln(sinx+2)+c

33 أجد  11+exdx بطريقتين مختلفتين إحداهما الكسور الجزئية ، مبرراً أجابتي :

 Solution1:   11+exdx= 11+ex×e-xe-xdx                   = e-xe-x+1dx=-ln(e-x+1)+c                   =-ln(1ex+1)+c                   =-ln(1+exex)+c= ln(ex1+ex)+c Solution2:  let u=ex dx=duex  11+exdx= 11+uduu                  = 1(u2+u)du1(u2+u)=au+bu+1  1=a(u+1)+b(u) when  u=0        1=a           a=1 when  u=-1     1=-b      b=-1  1(u2+u)du = 1udu -1u+1du                       =ln(u)-ln(u+1)                       =ln(uu+1)=ln(exex+1)+c    

 

34  0ln211+exdxSolution:  0 ln211+exdx= ln(ex1+ex) ln20}                        = ln(eln21+eln2) -ln(e01+e0)                        = ln(23) -ln(12)= ln(43)               

35 أثبت أن :  4 95x2-8x+12xx-12 dx=ln(323)-524

     Solution:     5x2-8x+12xx-12=a2x+bx-1+c(x-1)2      5x2-8x+1=a(x-1)2+2bx(x-1)+2cx  when x=0           1=a                      a=1  when x=1           -2=2c                 c=-1  when x=2           5=1+4b+-4      b=2   5x2-8x+12xx-12dx=12 1xdx+2 1x-1dx- 1(x-1)2dx   49 5x2-8x+12xx-12dx=12ln(x)+2ln(x-1)+1x-1  94}                                                 =(12ln(9)+2ln(9-1)+19-1)-(12ln(4)+2ln(4-1)+14-1)                              =(ln(3)+ln(64)+18)-(ln(2)+ln(9)+13)                              =ln(3×64)+18-ln(2×9)-13                              =ln(3×642×9)-524=ln(323)-524

36 أثبت أن : 916 2xx-4dx=4(1+ln(53))   

Solution:let u=x     u2=x dx=2udu2xx-4dx = 2uu2-42udu               = 4u2u2-4du= 4u2-16u2-4du+ 16u2-4du                     4u2u2-4du=4 du+ 16u2-4du                     16u2-4=au-2+bu+2      16=a(u+2)+b(u-2)  when u=2           16=4a                    a=4  when u=-2       16=-4b                 b=-4  3416u2-4du=4 1u-2du-4 1u+2du                   =4ln(u-2)-4ln(u+2) 43                   =4(ln(u-2)-ln(u+2))43                   =4ln(u-2u+2) 43                   =4(ln(13)-ln(15))=4ln(13×51)=4ln(53)                344u2u2-4du=344 du+34 16u2-4du                                    =4+4ln(53)=4(1+ln(53)) 

 

37  أثبت أن :  01 4x2+9x+42x2+5x+3dx=2+12ln(512)    

01 4x2+9x+42x2+5x+3dx Solution:4x2+9x+42x2+5x+3=4x2+10x+6 2x2+5x+3-x+2 2x2+5x+34x2+9x+42x2+5x+3=22x2+5x+3 2x2+5x+3-x+2 2x2+5x+34x2+9x+42x2+5x+3=2-x+2 2x2+5x+3  x+2 2x2+5x+3dx=    x+2 2x2+5x+3=a2x+3+bx+1   x+2 =a(x+1)+b(2x+3)  when x=-32     12=-12a       a=-1  when x=-1       1=b                 b=1 x+2 2x2+5x+3dx=- 12x+3dx+1x+1dx                    =-12ln(2x+3)+ln(x+1)10                     =(-12ln(5)+12ln(3))+(ln(2)-ln(1))                    =-12ln(53)+ln(2)01 4x2+9x+42x2+5x+3dx=2x10-(-12ln(53)+ln(2))                             =2+12ln(53)-ln(2)=2+12(ln(53)-ln(4))                             =2+12ln(512)

 

38 1+xxdx     Solution:  let u=1+x   dx=2xdu   1+xxdx=ux2xdu                        =2uxdu                        =2uu-1du  let w=u   du=2wdw  2uu-1du=2ww2-12wdw                   =4w2w2-1dw=4w2-1w2-1dw+41w2-1dw                    =4dw+41w2-1dw   4w2-1=aw-1+bw+1     4=a(w+1)+b(w-1)  when w=1           4=2a                    a=2  when w=-1       4=-2b                 b=-2  4w2-1du=2 1w-1du-2 1w+1du                    =2ln(w-1)-2ln(w+1)                    =2ln(u-1)-2ln(u+1)                    =2ln(1+x-1)-2ln(1+x+1)                    =2ln(1+x-11+x+1) 1+xxdx=4(1+x)+2ln(1+x-11+x+1)+c

 

 

39 x16x4-1dx     Solution:  let u=x2   dx=du2x   x16x4-1dx=x16u2-1du2x                        =12116u2-1du  116u2-1=a4u-1+b4u+1    1=a(4u+1)+b(4u-1)  when u=14           1=2a                    a=12  when u=0             1=-2b                 b=-12  12116u2-1du=14 14u-1du-1414u+1du                           =116 44u-1du-11644u+1du                           =116ln(4u-1)-116ln(4u+1)                           =116ln(4x2-1)-116ln(4x2+1)+c